Skip to main content
Log in

Low voltage low power 8-bit folding/interpolating ADC with rail-to-rail input range

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new technique for improving the performance of low-voltage folding ADC’s by extending the input range is presented. It is shown that by using both PMOS and NMOS differential pairs in the folding blocks, the overall input voltage range of the ADC can be increased to rail-to-rail. A novel self-adjustment method is also introduced to compensate for the different input–output characteristics of PMOS and NMOS differential pairs. A low voltage 8-bit 80 MSample/s folding/interpolating ADC is then designed and fabricated in a 0.18 μm CMOS process. Operating with a supply voltage as low as 1.2 V, measurements show an INL below ±0.55 LSB, SNDR of 43.5 dB at 80 MHz Sampling Frequency and power dissipation of only 30 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hsu, C., Huang, C., Lin, Y., & Lee, C. (2007). A 10 b 200 MS/s pipelined folding ADC with offset calibration. 33rd European Solid State Circuits Conference, 11(13), 151–154).

    Google Scholar 

  2. Srinivas, V., Pavan, Sh., Lachhwani, V., & Sasidhar, N. (2006). A distortion compensating flash analog-to-digital conversion technique. IEEE Journal of Solid-State Circuits, 41(9), 1959–1969.

    Article  Google Scholar 

  3. Lee, J., Weiner, J., Roux, P., Leven, A., & Chen, Y. (2008). A 24GS/s 5-b ADC with Closed-Loop THA in 0.18 μm SiGe BiCMOS. Proceedings of IEEE Custom Integrated Circuits Conference 313–316.

  4. Geelen, G., & Paulus, E. (2004). An 8 b 600 MS/s 200 mW folding A/D converter using an amplifier preset technique. IEEE International Solid-State Circuits Conference, 15(19), 254–526.

    Google Scholar 

  5. Taft, R., Chris, C. A., Tutsi, M. R., Hidri, O., & Pons, V. (2004). A 1.8 V 1.6 GS/s 8 b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency. IEEE Journal of Solid-State Circuits, 39(12), 2107–2115.

    Article  Google Scholar 

  6. Makigawa, K., Ono, K., Ohkawa, T., Matsuura, K., & Segami, M. (2006). A 7bit 800 Msps 120 mW folding and interpolation ADC using a mixed-averaging scheme. Symposium on VLSI circuits, digest of technical papers (pp. 138–139).

  7. Lee, D., Song, J., Shin, J., Hwang, S., Song, M., & Wysocki, T. (2007). Design of a 1.8 V 8-bit 500MSPS folding-interpolation CMOS A/D converter with a folder averaging technique. 18th European Conference on Circuit Theory and Design, 27(30), 356–359.

    Google Scholar 

  8. Moon, J., Jung, S., Hwang, S., & Song, M. (2006). A 6 b 100 MS/s 0.28 mm2 5 mW 0.18 μm CMOS F/I ADC with a novel folder reduction technique. IEEE International Conference on Electronics, Circuits and Systems, 140–143.

  9. Bult, K. (2000). Analog design in deep sub-micron CMOS. Proceedings of the 26th European solid state circuits conference (pp. 126–132).

  10. Blum, A. S., Engl, B. H., Eichfeld, H. P., Hagelaver, R., & Abidi, A. A. (2002). A 1.2 V 10-b 100-MSamlpes/s A/D converter in 0.12 μm CMOS. IEEE Symposium On VLSI circuits digest technical papers (pp. 326–327).

  11. Wang, Zh. Y., Pan, H., Chang, CH. M., Yu, H. R., & Chang, M. F. (2004). A 600 MSPS 8-bit Folding ADC in 0.18 μm CMOS. Proceedings of the symposium On VLSI circuits (pp. 424–427).

  12. Liu, M. H., & Liu, S. I. (2001). An 8-bit 10 MS/s folding and interpolating ADC using the continuous-time auto-zero technique. IEEE Journal of Solid-State Circuits, 36(1), 122–128.

    Article  Google Scholar 

  13. Sigenobu, T., et al. (2001). A 8-b 30-MS/s 18-mW ADC with 1.8-V single power supply. IEEE Symposium On VLSI Circuits digest technical papers (pp. 209–210).

  14. Nauta, B., & Venes, A. G. W. (1995). A 70-MS/s 100-mW 8-b CMOS folding and interpolating A/D converter. IEEE Journal of Solid-State Circuits, 30(12), 1302–1308.

    Article  Google Scholar 

  15. Movahedian, H., Azin, M., & Sharif Bakhtiar, M. (2004). A low voltage low power 8-bit folding/interpolating ADC with rail-to-rail input range. Proceedings of International Symposium On Circuits and Systems (ISCAS) (pp. 77–80).

  16. Waltari, W., & Halonen, K. (2002). Bootstrapped Switch without Bulk Effect in standard CMOS technology. Electronic Letters, 38(12), 555–557.

    Article  Google Scholar 

  17. Bult, K., & Buchwald, A. (1990). An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm2. IEEE Journal of Solid-State Circuits, 32(12), 1887–1895.

    Article  Google Scholar 

  18. Li, Y., & Sanchez-Sinencio, E. (2003). A wide input bandwidth 7-bit 300-MSample/s folding and current-mode interpolating ADC. IEEE Journal of Solid-State Circuits, 38(8), 1405–1410.

    Article  Google Scholar 

  19. Cho, T., & Gray, P. (1995). A 10 b, 20 Msample/s, 35 mW pipeline A/D converter. IEEE Journal of Solid-State Circuits, 30(3), 166–172.

    Article  Google Scholar 

  20. Min, B. M., Kim, P., Bowman, F. W., Boisvert, D. M., & Aude, A. J. (2003). A 69-mW 10-bit 80-MSample/s pipelined CMOS ADC. IEEE Journal of Solid-State Circuits, 38(12), 2031–2039.

    Article  Google Scholar 

  21. Nikoozadeh, A., & Murmann, B. (2006). An analysis of latch comparator offset due to load capacitor mismatch. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(12), 1398–1402.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Movahedian Attar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movahedian Attar, H., Bakhtiar, M.S. Low voltage low power 8-bit folding/interpolating ADC with rail-to-rail input range. Analog Integr Circ Sig Process 61, 181–189 (2009). https://doi.org/10.1007/s10470-009-9282-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9282-1

Keywords

Navigation